The RAMDISK Storage Accelerator

A Method of Accelerating I/O Performance on HPC
Systems Using RAMDISKs

Tim Wickberg, Christopher D. Carothers
wickbt@rpl.edu, chrisc@cs.rpi.edu

Rensselaer Polytechnic Institute

NTEC,
b
3 “©
+)
= \% (3
=
=5
COMPUTATIONAL CENTER for
NAMOTECHNOLDGY INNOVATIONS

mailto:wickbt@rpi.edu
mailto:chrisc@cs.rpi.edu

Background

 CPUs performance doubles every 18 months
« HPC system performance follows this trend
« Disk I/O throughput doubles once every 10 years

e This creates an exponentially widening gap
between compute and storage systems

 We can't continue to throw disks at the problem to keep
current compute to I/O ratio intact

* More disks not only cost more, but failure rates also
cause problems

RAMDISK Storage Accelerator

Introduce new layer to HPC data storage — the
RAMDISK Storage Accelerator (RSA)

—unctions as a high-speed data staging area

Allocated per job, In proportion to compute
resources

Requires no application modification, only a few
settings in job scripts to enable

RSA

* Aggregate RAMDISKs on RSA nodes together
using a parallel filesystem

 PVFS In our tests
* Lustre, GPFS, Ceph and others possible as well

« Parallel RAMDISK Is exported to I/O nodes In
the system

Bind mount

e mount —-o bind /rsa /place/on/diskfs

* Application sees a single FS hierarchy, doesn't
need to know If the RSA is functional or not

 Decouples RSA from the compute system, allows
the application to function regardless of RSA
availability

Scheduling

» Set aside half the I/O nodes for active jobs, and
the other half for jobs that have finished or will
start soon

* Allocate RSA nodes in proportion to the
compute system

 Data moves asynchronous to job execution,
and frees the compute system up sooner.

Example job flow

« Before job begins, selected as next-likely to start.
e Stage data in to RSA.

e Job Starts on compute system

 Reads data in from RSA

Checkpoints to RSA

Job execution finishes

e results written to RSA
Compute system released

RSA pushes results back to disk storage after compute
system has moved on to the next job

Compare to traditional job flow

Initial load: 15 minute read in from disk

Checkpoints: 10 minutes per checkpoint, once
an hour, 24 hour job run

Results back out: 10 minutes
225 minutes spent on I/O

RSA

Initial load: happens before compute job starts
Checkpoints: 1 minute each

Results out: 1 minute to RSA

Afterwards: results from RSA back to disk
storage

25 minutes spent on |/O

e Saved 200 minutes on the compute system

* Asynchronous data staging seems likely for any
large scale system at this point

First Half of
RSA Nodes

Second Half Of
RSA Nodes

Compute System
With RSA

Compute System
Without RSA

Staging Data In
For Job 1

awi]

In Use By Job 1

Job 1 Input from Disk

Staging Data In
For Job 2

Ready

Job 1 Execution

Job 1 Execution

=

Staging Data Out
For Job 1

Staging Data In
For Job 3

Ready

In Use By Job 2

Job 2 Execution

Job 1 Output to Disk

Job 2 Input from Disk

In Use By Joh 3

Staging Data Out
For Job 2

Staging Data In
For Jobh 4

Ready

Job 3 Execution

Job 2 Execution

Job 2 Output to Disk

Job 3 Input from Disk

Staging Data Out
For Job 3

In Use By Job 4

Job 4 Execution

Job 3 Execution

Staging Data Out
For Job 4

Job 3 Output to Disk

Test System

 1-rack Blue Gene/L

* 16 RSA nodes (borrowed from another cluster),
32GB RAM each

* Due to networking constraints, a single Gigabit
Ethernet link connects the RSA to the BG/L
functional network.

 Bottleneck evident in results.

Example RSA Scheduler

RSA scheduler implements the

Proof-of-concept constructed a
SLURM job scheduler

scheduling,

RSA construction/destruction, data staging

ongside the

Test Results

« More details in the paper, but briefly:

Example test: file-per-process, 2048 processes, 2GB data total
GPFS disk: 1100 seconds to write out test data

- High contention exacerbates problems with GPFS metadata locking

RSA: 36 seconds to write to RSA

— 222 seconds after compute system is released to push data back to GPFS
« Data staged back from single system avoids GPFS contention issues

viewpoint

2800% speedup from the application / compute system's

Table 2: Comparison of output performance of GPFS disk storage vs. RSA, 1024 nodes (2048 processes) in file-per-process,

with normal and custom post-processing scripts. Times are in seconds.

No RSA || RSA With Default Stage-Out || RSA with Custom Stage-Out
Output || Output | Stage-Out || Output | Stage-Out
Run 1 1158.81 36.11 222 35.76 179
Run 2 1193.92 36.25 227 36.25 178
Run 3 976.84 35.26 224 35.97 181

| Mean || 1109.86 || 35.87 | 224 || 36.43 | 179 |

Future Work

Full-scale test system to be implemented @
CCNI In the next six months

1-rack (200 TFLOPS) Blue Gene/Q
32 RSA Nodes, each 128GB+ RAM, 4TB+ total.
FDR (56Gbps) Infiniband fabric

Extensions

« RAM is faster, but SSDs are catching up, and
provide better price/capacity.

« Everything shown here can extend to SSD-backed
systems as well.

e Overhead in Linux memory management.

« Data copied in-memory ~5 times on the way in or out,
this could be reduced with major modification to the
kernel. Or, perhaps a simplified OS could be developed
to support this.

 Handle RSA scheduling directly in job scheduler,
rather than external

Conclusions:

 |/O continues to fall behind compute capacity

 The RSA provides a method to mitigate this
problem

* Frees the compute system faster, reduce pressure
on disk storage I/O

* Possible to integrate into HPC systems without
changing applications

Thank You

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

